Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
Anal Chem ; 96(16): 6459-6466, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38592893

RESUMO

Cysteine (Cys) and its oxidized form, cystine (Cys2), play crucial roles in biological systems and have considerable applications in cell culture. However, Cys in cell culture media is easily oxidized to Cys2, leading to solubility issues. Traditional analytical methods struggle to maintain the oxidation states of Cys and Cys2 during analysis, posing a significant challenge to accurately measuring and controlling these compounds. To effectively control the Cys and Cys2 levels, a rapid and accurate analytical method is required. Here, we screened derivatizing reagents that can react with Cys even under acidic conditions to realize a novel analytical method for simultaneously determining Cys and Cys2 levels. Diethyl 2-methylenemalonate (EMM) was found to possess the desired traits. EMM, characterized by its dual electron-withdrawing attributes, allowed for a rapid reaction with Cys under acidic conditions, preserving intact information for understanding the functions of target compounds. Combined with LC-MS/MS and an internal standard, this method provided high analytical accuracy in a short analytical time of 9 min. Using the developed method, the rapid oxidation of Cys in cell culture media was observed with the headspace of the storage container considerably influencing Cys oxidation and Cys2 precipitation rates. The developed method enabled the direct and simplified analysis of Cys behavior in practical media samples and could be used in formulating new media compositions, ensuring quality assurance, and real-time analysis of Cys and Cys2 in cell culture supernatants. This novel approach holds the potential to further enhance the media performance by enabling the timely optimal addition of Cys.


Assuntos
Meios de Cultura , Cisteína , Cistina , Compostos de Sulfidrila , Espectrometria de Massas em Tandem , Cisteína/química , Cisteína/análise , Espectrometria de Massas em Tandem/métodos , Cistina/química , Cistina/análogos & derivados , Cistina/análise , Meios de Cultura/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/análise , Química Click , Malonatos/química , Humanos , Cromatografia Líquida/métodos , Oxirredução , 60705
2.
J Hazard Mater ; 468: 133812, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368684

RESUMO

Although selenium (Se) and cadmium (Cd) often coexist naturally in the soil of China, the health risks to local residents consuming Se-Cd co-enriched foods are unknown. In the present study, we investigated the effects of chemical-based selenocystine (SeCys2) on cadmium chloride-induced human hepatocarcinoma (HepG2) cell injury and plant (Cardamine hupingshanensis)-derived SeCys2 against Cd-induced liver injury in mice. We found that chemical- and plant-based SeCys2 showed protective effects against Cd-induced HepG2 cell injury and liver damage in mice, respectively. Compared with Cd intervention group, co-treatment with chemical- or plant-based SeCys2 both alleviated liver toxicity and ferroptosis by decreasing ferrous iron, acyl-CoA synthetase long-chain (ACSL) family member 4, lysophosphatidylcholine acyltransferase 3, reactive oxygen species and lipid peroxide levels, and increasing ACSL3, peroxisome proliferator-activated receptor α, solute carrier family 7 member 11 (SLC7A11) and glutathione and glutathione peroxidase 4 (GPX4) levels. In conclusion, chemical- and plant-based SeCys2 alleviated Cd-induced hepatotoxicity and ferroptosis by regulating SLC7A11/GPX4 signaling and lipid peroxidation. Our findings indicate that potential Cd toxicity from consuming foods grown in Se- and Cd-rich soils should be re-evaluated. This study offers a new perspective for the development of SeCys2-enriched agricultural products.


Assuntos
Cistina/análogos & derivados , Hepatopatias , Compostos Organosselênicos , Selênio , Humanos , Camundongos , Animais , Cádmio/toxicidade , Antioxidantes/farmacologia , Selênio/farmacologia
3.
Chemistry ; 30(15): e202304050, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38197477

RESUMO

A low pKa (5.2), high polarizable volume (3.8 Å), and proneness to oxidation under ambient conditions make selenocysteine (Sec, U) a unique, natural reactive handle present in most organisms across all domains of life. Sec modification still has untapped potential for site-selective protein modification and probing. Herein we demonstrate the use of a cyclometalated gold(III) compound, [Au(bnpy)Cl2 ], in the arylation of diselenides of biological significance, with a scope covering small molecule models, peptides, and proteins using a combination of multinuclear NMR (including 77 Se NMR), and LC-MS. Diphenyl diselenide (Ph-Se)2 and selenocystine, (Sec)2 , were used for reaction optimization. This approach allowed us to demonstrate that an excess of diselenide (Au/Se-Se) and an increasing water percentage in the reaction media enhance both the conversion and kinetics of the C-Se coupling reaction, a combination that makes the reaction biocompatible. The C-Se coupling reaction was also shown to happen for the diselenide analogue of the cyclic peptide vasopressin ((Se-Se)-AVP), and the Bos taurus glutathione peroxidase (GPx1) enzyme in ammonium acetate (2 mM, pH=7.0). The reaction mechanism, studied by DFT revealed a redox-based mechanism where the C-Se coupling is enabled by the reductive elimination of the cyclometalated Au(III) species into Au(I).


Assuntos
Cistina/análogos & derivados , Compostos Organosselênicos , Selênio , Animais , Bovinos , Ouro/química , Peptídeos , Glutationa Peroxidase/metabolismo , Selenocisteína/química
4.
Chem Biol Interact ; 365: 110046, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35863474

RESUMO

Selenocystine (SeC) has been identified as a novel compound with broad-spectrum anticancer activity. However, the effects of SeC on modifying DNA repair mechanism were less addressed. In this study, we demonstrated that SeC selectively induced cytotoxicity and genotoxicity against HepG2 hepatoma cell line. Comet assay revealed SeC-induced DNA damage in HepG2 cells, particularly in the form of DNA double strand breaks (DSBs), corroborated by the increase expression of the DSB marker, gamma-H2AX. We further demonstrated that SeC suppressed DNA homologous recombination repair, exacerbating DNA damage accumulation. Such effects on DNA damage and cell viability inhibition were alleviated by antioxidants, glutathione and Trolox, suggesting the involvement of reactive oxygen species (ROS). High levels of intracellular and mitochondrial ROS were detected in SeC-treated HepG2. In addition, SeC impaired the expression of antioxidant enzymes (superoxidase mutases and catalase), prompting the imbalance between antioxidant protection and excessive ROS formation and eliciting DSBs and cellular death. Decreased procaspase-3, 7, and 9 and Bcl-2 proteins and an increased Bax/Bcl-2 ratio, were observed after SeC treatment, but could be reversed by Torlox, confirming the action of SeC on ROS-induced apoptosis. In vivo, the xenograft tumor model of HepG2 cells validated the inhibition of SeC on tumor growth, and the induction of DSBs and apoptosis. In summary, SeC has the capability to induce ROS-dependent DNA damage and impeded DBS repair in HepG2 cells. Thus, SeC holds great promise as a therapeutic or adjuvant agent targeting DNA repair for cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Antioxidantes/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Cistina/análogos & derivados , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Compostos Organosselênicos , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reparo de DNA por Recombinação
5.
Arch Biochem Biophys ; 726: 109233, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35659493

RESUMO

Some chemical properties of cystine and cysteine have been compared with those of their selenium-containing analogs. Major differences were noted between their titration curves, pK values of 2.01, 5.24, and 9.96 were observed for the ionizations of the carboxyl, selenohydryl, and amino groups, respectively, of selenocysteine. These values are compared with a pK of 2.3 for the carboxyl group of cysteine and values in the range of 8-10 for the ionization of the sulfhydryl and amino groups. Selenocysteine is much more reactive with halo acid derivatives than is cysteine, and reacts readily with iodoacetate even at pH values much below the pK of the selenohydryl group. Selenocysteine has an apparent half-wave potential of -0.212 V compared with 0.021 V for cysteine. It is unstable to acid hydrolysis, being completely decomposed by heating at 110° in 6 n HCl. It is also more soluble in water than is cysteine.


Assuntos
Selênio , Selenocisteína , Cisteína , Cistina/análogos & derivados , Compostos Organosselênicos , Selênio/química , Enxofre
6.
Eur J Pharmacol ; 926: 175047, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35609679

RESUMO

There is a dearth of effective pharmacotherapies for sepsis-induced acute lung injury/acute respiratory distress syndrome (ALI/ARDS) to which oxidative stress and excessive inflammation are major contributors. We hypothesized that fudosteine, a cysteine derivative, may protect against sepsis-induced ALI/ARDS given its anti-oxidant capacity. This study aimed to investigate the effects and mechanisms of fudosteine in a mouse model of sepsis-induced ALI. Sepsis was induced by cecal ligation and puncture (CLP). The intragastrical administration of fudosteine (25 mg/kg, 50 mg/kg, and 100 mg/kg) dose-dependently decreased proinflammatory cytokine levels in bronchoalveolar lavage fluid (BALF) and serum and reduced BALF/serum albumin and lung wet/dry weight ratios in septic mice. The lung injury score was significantly lowered by fudosteine [e.g., 0.18 ± 0.03 (100 mg/kg) vs. 0.42 ± 0.03 (CLP), P < 0.0001]. Fudosteine also reduced the biomarkers of lung epithelial injury in BALF and markedly improved oxidative stress indicators in lung tissues [e.g., malondialdehyde: 337.70 ± 23.78 (100 mg/kg) vs. 686.40 ± 28.36 (CLP) nmol/mg protein, P < 0.0001]. Lung tissue transcriptomics analyses revealed suppressed inflammatory responses and oxidative stress with fudosteine and the involvement of the inflammasome and pyroptosis pathways. Western blot analyses indicated that fudosteine inhibited the sepsis-induced activation of gasdermin D (GSDMD) and caspase-1 and the upregulation of thioredoxin-interacting protein (TXNIP), nucleotide-binding domain, leucine-rich repeat-containing receptor, pyrin domain-containing-3 (NLRP3), and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Fudosteine therefore protects against sepsis-induced ALI in mice, and the inhibition of pyroptosis via the TXNIP/NLRP3/GSDMD pathway may be an underlying mechanism.


Assuntos
Lesão Pulmonar Aguda , Cistina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Síndrome do Desconforto Respiratório , Sepse , Tiorredoxinas , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Proteínas de Transporte , Cistina/análogos & derivados , Cistina/farmacologia , Inflamassomos/metabolismo , Pulmão , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Tiorredoxinas/metabolismo
7.
Respir Physiol Neurobiol ; 302: 103912, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35447347

RESUMO

We determined whether intravenous injections of the membrane-permeable ventilatory stimulants, D-cysteine ethyl ester (ethyl (2 S)- 2-amino-3-sulfanylpropanoate) (D-CYSee) and D-cystine dimethyl ester (methyl (2 S)- 2-amino-3-[[(2 S)- 2-amino-3-methoxy-3-oxopropyl]disulfanyl] propanoate) (D-CYSdime), could overcome the deleterious actions of intravenous morphine on arterial blood pH, pCO2, pO2 and sO2, and Alveolar-arterial (A-a) gradient (i.e., the measure of exchange of gases in the lungs) in Sprague Dawley rats anesthetized with isoflurane. Injection of morphine (2 mg/kg, IV) caused pronounced reductions in pH, pO2 and sO2 accompanied by elevations in pCO2, all which are suggestive of diminished ventilation, and elevations in A-a gradient, which suggests a mismatch of ventilation-perfusion. Subsequent boluses of D-cysteine ethyl ester (2 ×100 µmol/kg, IV) or D-cystine dimethyl ester (2 ×50 µmol/kg, IV) rapidly reversed of the negative actions of morphine on pH, pCO2, pO2 and sO2, and A-a gradient. Similar injections of D-cysteine (2 ×100 µmol/kg, IV) were without effect, whereas injections of D-cystine (2 ×50 µmol/kg, IV) produced a modest reversal. Our data show that D-cysteine ethyl ester and D-cystine dimethyl ester readily overcome the deleterious effects of morphine on arterial blood gas (ABG) chemistry and A-a gradient by mechanisms that may depend upon their ability to rapidly enter cells. As a result of their known ability to enter the brain, lungs, muscles of the chest wall, and most likely the major peripheral chemoreceptors (i.e., carotid bodies), the effects of the thiolesters on changes in ABG chemistry and A-a gradient elicited by morphine likely involve central and peripheral mechanisms. We are employing target prediction methods to identify an array of in vitro and in vivo methods to test potential functional proteins by which D-CYSee and D-CYSdime modulate the effects of morphine on breathing.


Assuntos
Cistina , Morfina , Animais , Cisteína/análogos & derivados , Cisteína/farmacologia , Cistina/análogos & derivados , Cistina/farmacologia , Morfina/farmacologia , Ratos , Ratos Sprague-Dawley
8.
Arch Biochem Biophys ; 726: 109157, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35276211

RESUMO

Selenium was initially considered a toxic element found in plants growing in soils rich in this element. However, a few years later, selenocysteine was recognized as the 21st amino acid. Huber and Criddle's article has been crucial in discovering selenium-containing proteins and other related works on selenocysteine.


Assuntos
Selênio , Selenocisteína , Cistina/análogos & derivados , Cistina/metabolismo , Compostos Organosselênicos , Selênio/química , Selenocisteína/química , Selenocisteína/metabolismo , Enxofre
9.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209090

RESUMO

Chemo and siRNA synergic treatments for tumors is a promising new therapeutic trend. Selenocystine, a selenium analog of cysteine, has been considered a potential antitumor agent due to its redox perturbing role. In this study, we developed a nanocarrier for siRNA based on a selenocystine analog engineered polyetherimide and achieved traceable siRNA delivery and the synergic killing of tumor cells. Notably, we applied the label-free Schiff base fluorescence mechanism, which enabled us to trace the siRNA delivery and to monitor the selenocystine analogs' local performance. A novel selenocystine-derived fluorescent Schiff base linker was used to crosslink the polyetherimide, thereby generating a traceable siRNA delivery vehicle with green fluorescence. Moreover, we found that this compound induced tumor cells to undergo senescence. Together with the delivery of a siRNA targeting the anti-apoptotic BCL-xl/w genes in senescent cells, it achieved a synergistic inhibition function by inducing both senescence and apoptosis of tumor cells. Therefore, this study provides insights into the development of label-free probes, prodrugs, and materials towards the synergic strategies for cancer therapy.


Assuntos
Cistina/análogos & derivados , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Nanocompostos/química , Compostos Organosselênicos/química , RNA Interferente Pequeno/genética , Bases de Schiff/química , Linhagem Celular Tumoral , Sobrevivência Celular , Cistina/química , Fluorescência , Humanos , Microscopia de Fluorescência , Estrutura Molecular , RNA Interferente Pequeno/administração & dosagem
10.
Small ; 18(5): e2104301, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34825484

RESUMO

The fabrication of discrete nanostructures with both plasmonic circular dichroism (PCD) and chiral features is still a challenge. Here, gold nanoarrows (GNAs) with both chiroptical responses and chiral morphologies are achieved by using L-selenocystine (L-SeCys2 ) as a chiral inducer. While L-SeCys2 generates GNAs with a weak PCD signal, the irradiated L-SeCys2 (irr-L-SeCys2 ) leads to GNAs with featured helical grooves (HeliGNAs) accompanying with a strong PCD signal. It is revealed that when L-SeCys2 is photo-irradiated, the emergence of selenyl radicals plays an important role in the formation of HeliGNAs and enhancement of the chiroptical signal. In comparison with L-SeCys2 and the other kinds of sulfur-containing amino acids, the formation mechanism of helical grooves on the surface of GNAs is proposed. Both HeliGNAs and GNAs are used to discriminate amino acids by utilizing surface enhanced Raman scattering (SERS) effect. In the presence of either GNAs or HeliGNAs as the substrate, Fmoc-L-Phe shows more significant SERS than Fmoc-D-Phe. This study may advance the design of discrete plasmonic nanomaterials with both chiral morphology and potential applications in discrimination of chiral molecules.


Assuntos
Ouro , Nanoestruturas , Dicroísmo Circular , Cistina/análogos & derivados , Ouro/química , Nanoestruturas/química , Compostos Organosselênicos
11.
Toxicol Appl Pharmacol ; 438: 115830, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933053

RESUMO

Dibenzo[def,p]chrysene (DBC) is an environmental polycyclic aromatic hydrocarbon (PAH) that causes tumors in mice and has been classified as a probable human carcinogen by the International Agency for Research on Cancer. Animal toxicity studies often utilize higher doses than are found in relevant human exposures. Additionally, like many PAHs, DBC requires metabolic bioactivation to form the ultimate toxicant, and species differences in DBC and DBC metabolite metabolism have been observed. To understand the implications of dose and species differences, a physiologically based pharmacokinetic model (PBPK) for DBC and major metabolites was developed in mice and humans. Metabolism parameters used in the model were obtained from experimental in vitro metabolism assays using mice and human hepatic microsomes. PBPK model simulations were evaluated against mice dosed with 15 mg/kg DBC by oral gavage and human volunteers orally microdosed with 29 ng of DBC. DBC and its primary metabolite DBC-11,12-diol were measured in blood of mice and humans, while in urine, the majority of DBC metabolites were obeserved as conjugated DBC-11,12-diol, conjugated DBC tetrols, and unconjugated DBC tetrols. The PBPK model was able to predict the time course concentrations of DBC, DBC-11,12-diol, and other DBC metabolites in blood and urine of human volunteers and mice with reasonable accuracy. Agreement between model simulations and measured pharmacokinetic data in mice and human studies demonstrate the success and versatility of our model for interspecies extrapolation and applicability for different doses. Furthermore, our simulations show that internal dose metrics used for risk assessment do not necessarily scale allometrically, and that PBPK modeling provides a reliable approach to appropriately account for interspecies differences in metabolism and physiology.


Assuntos
Crisenos/administração & dosagem , Crisenos/farmacocinética , Cistina/análogos & derivados , Animais , Carcinógenos/administração & dosagem , Carcinógenos/farmacocinética , Cistina/administração & dosagem , Cistina/farmacocinética , Feminino , Humanos , Masculino , Camundongos , Modelos Biológicos , Neoplasias/induzido quimicamente
12.
ACS Sens ; 6(6): 2125-2128, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34080411

RESUMO

The cystine/glutamate antiporter (xCT) is a crucial transporter that maintains cellular redox balance by regulating intracellular glutathione synthesis via cystine uptake. However, no robust and simple method to determine the cystine uptake activity of xCT is currently available. We have developed a method to measure the xCT activity via the reaction of selenocysteine and fluorescein O,O'-diacrylate (FOdA). Selenocystine, a cystine analogue, is transported into cells through xCT on the cell membrane. The amount of the transported selenocystine was then determined by a reaction using tris(2-carboxyethyl)phosphine (TCEP) and FOdA in a weak acidic buffer at pH 6. Using this method, the cystine uptake activity of xCT in various cells and the inhibitory efficiency of xCT inhibitors, were evaluated.


Assuntos
Cistina , Corantes Fluorescentes , Sistema y+ de Transporte de Aminoácidos , Cistina/análogos & derivados , Cistina/metabolismo , Fluorescência , Compostos Organosselênicos
13.
Sci Rep ; 11(1): 10038, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976311

RESUMO

We have identified thiolesters that reverse the negative effects of opioids on breathing without compromising antinociception. Here we report the effects of D-cystine diethyl ester (D-cystine diEE) or D-cystine dimethyl ester (D-cystine diME) on morphine-induced changes in ventilation, arterial-blood gas chemistry, A-a gradient (index of gas-exchange in the lungs) and antinociception in freely moving rats. Injection of morphine (10 mg/kg, IV) elicited negative effects on breathing (e.g., depression of tidal volume, minute ventilation, peak inspiratory flow, and inspiratory drive). Subsequent injection of D-cystine diEE (500 µmol/kg, IV) elicited an immediate and sustained reversal of these effects of morphine. Injection of morphine (10 mg/kg, IV) also elicited pronounced decreases in arterial blood pH, pO2 and sO2 accompanied by pronounced increases in pCO2 (all indicative of a decrease in ventilatory drive) and A-a gradient (mismatch in ventilation-perfusion in the lungs). These effects of morphine were reversed in an immediate and sustained fashion by D-cystine diME (500 µmol/kg, IV). Finally, the duration of morphine (5 and 10 mg/kg, IV) antinociception was augmented by D-cystine diEE. D-cystine diEE and D-cystine diME may be clinically useful agents that can effectively reverse the negative effects of morphine on breathing and gas-exchange in the lungs while promoting antinociception. Our study suggests that the D-cystine thiolesters are able to differentially modulate the intracellular signaling cascades that mediate morphine-induced ventilatory depression as opposed to those that mediate morphine-induced antinociception and sedation.


Assuntos
Analgésicos Opioides/efeitos adversos , Cistina/análogos & derivados , Morfina/efeitos adversos , Ventilação Pulmonar/efeitos dos fármacos , Animais , Gasometria , Dióxido de Carbono/sangue , Cistina/farmacologia , Cistina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Concentração de Íons de Hidrogênio , Masculino , Oxigênio/sangue , Ratos Sprague-Dawley
14.
Biol Chem ; 402(7): 769-783, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33735944

RESUMO

Bacteria are increasingly relying on biofilms to develop resistance to antibiotics thereby resulting in their failure in treating many infections. In spite of continuous research on many synthetic and natural compounds, ideal anti-biofilm molecule is still not found thereby warranting search for new class of molecules. The current study focuses on exploring anti-biofilm potential of selenocystine against respiratory tract infection (RTI)-causing bacteria. Anti-bacterial and anti-biofilm assays demonstrated that selenocystine inhibits the growth of bacteria in their planktonic state, and formation of biofilms while eradicating preformed-biofilm effectively. Selenocystine at a MIC50 as low as 42 and 28 µg/mL effectively inhibited the growth of Klebsiella pneumonia and Pseudomonas aeruginosa. The antibacterial effect is further reconfirmed by agar cup diffusion assay and growth-kill assay. Selenocystine showed 30-60% inhibition of biofilm formation in K. pneumonia, and 44-70% in P. aeruginosa respectively. It also distorted the preformed-biofilms by degrading the eDNA component of the Extracellular Polymeric Substance matrix. Molecular docking studies of selenocystine with quorum sensing specific proteins clearly showed that through the carboxylic acid moiety it interacts and inhibits the protein function, thereby confirming its anti-biofilm potential. With further validation selenocystine can be explored as a potential candidate for the treatment of RTIs.


Assuntos
Antibacterianos/farmacologia , Cistina/análogos & derivados , Klebsiella pneumoniae/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Cistina/química , Cistina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Klebsiella pneumoniae/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Compostos Organosselênicos/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Percepção de Quorum/efeitos dos fármacos , Infecções Respiratórias/microbiologia
15.
PLoS One ; 16(2): e0247496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630932

RESUMO

The search persists for a safe and effective agent to lyse arterial thrombi in the event of acute heart attacks or strokes due to thrombotic occlusion. The culpable thrombi are composed either primarily of platelets and von Willebrand Factor (VWF), or polymerized fibrin, depending on the mechanism of formation. Current thrombolytics were designed to target red fibrin-rich clots, but may be not be efficacious on white VWF-platelet-rich arterial thrombi. We have developed an in vitro system to study the efficacy of known and proposed thrombolytic agents on white clots formed from whole blood in a stenosis with arterial conditions. The agents and adjuncts tested were tPA, ADAMTS-13, abciximab, N-acetyl cysteine, and N,N'-Diacetyl-L-cystine (DiNAC). Most of the agents, including tPA, had little thrombolytic effect on the white clots. In contrast, perfusion of DiNAC lysed thrombi as quickly as 1.5 min, which ranged up to 30 min at lower concentrations, and resulted in an average reduction in surface area of 71 ± 20%. The clot burden was significantly reduced compared to both tPA and a saline control (p<0.0001). We also tested the efficacy of all agents on red fibrinous clots formed in stagnant conditions. DiNAC did not lyse red clots, whereas tPA significantly lysed red clot over 48 h (p<0.01). These results lead to a novel use for DiNAC as a possible thrombolytic agent against acute arterial occlusions that could mitigate the risk of hyper-fibrinolytic bleeding.


Assuntos
Cistina/análogos & derivados , Fibrinolíticos/farmacologia , Terapia Trombolítica/métodos , Trombose/tratamento farmacológico , AVC Trombótico/tratamento farmacológico , Animais , Cistina/farmacologia , Suínos
16.
Nat Commun ; 12(1): 163, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420034

RESUMO

Dynamic combinatorial chemistry applied to biological environments requires the exchange chemistry of choice to take place under physiological conditions. Thiol-disulfide exchange, one of the most popular dynamic combinatorial chemistries, usually needs long equilibration times to reach the required equilibrium composition. Here we report selenocystine as a catalyst mimicking Nature's strategy to accelerate thiol-disulfide exchange at physiological pH and low temperatures. Selenocystine is able to accelerate slow thiol-disulfide systems and to promote the correct folding of an scrambled RNase A enzyme, thus broadening the practical range of pH conditions for oxidative folding. Additionally, dynamic combinatorial chemistry target-driven self-assembly processes are tested using spermine, spermidine and NADPH (casting) and glucose oxidase (molding). A non-competitive inhibitor is identified in the glucose oxidase directed dynamic combinatorial library.


Assuntos
Biomimética/métodos , Cistina/análogos & derivados , Dissulfetos/química , Dobramento de Proteína , Compostos de Sulfidrila/química , Catálise , Ativação Enzimática , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Compostos Organosselênicos , Oxirredução , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Temperatura
17.
J Biochem ; 169(3): 371-382, 2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33063115

RESUMO

Organoselenium drugs like selenourea (SeU) and selenocystine (SeC) are found to exhibit several medicinal properties and have reported roles in the field of cancer prevention. However, studies related to their interactions with the major erythroid protein, haemoglobin (HbA) are still in dearth despite being of prime importance. In view of this, it was considered essential to investigate the interaction of these two anticancer drugs with Hb. Both the drugs showed significant changes in absorption spectra of Hb at wavelength of maximum absorption (λmax) 630 nm. SeU itself had no effect on the absorbance value at 630 nm with respect to time even with 400 µM concentration. However, it was rapidly converted to nanoselenium in presence of nitrite and there was an increase in the absorbance rate at 630 nm from 3.39 × 10-3 min-1 (without nitrite) to 8.94 × 10-3 min-1 in presence of nitrite (200 µM) owing to the generation of reactive oxygen species in the medium. Although the generation and increase in peak intensity at 630 nm in Hb generally indicates the formation and rise in the levels of methaemoglobin (metHb), nanoselenium was observed to follow a different path. Instead of causing oxidation of Fe2+ to Fe3+ responsible for metHb formation, nanoselenium was found to interact with the protein part, thereby causing changes in its secondary structure which is reflected in the increasing absorbance at 630 nm. SeC, however, showed a different effect. It was shown to act as a novel agent to reduce nitrite-induced metHb formation in a dose-dependent manner. The efficiency of SeC was again found to be less in diabetic blood samples as compared to the non-diabetic ones. For similar ratio of metHb to SeC (1:8), % reduction of metHb was found to be 27.46 ± 0.82 and 16.1 ± 2.4 for non-diabetic and diabetic samples, respectively, with a two tailed P-value much <0.05 which implies that the data are highly significant.


Assuntos
Cistina/análogos & derivados , Diabetes Mellitus/sangue , Hemoglobinas/metabolismo , Metemoglobinemia/sangue , Compostos Organosselênicos/farmacologia , Ureia/análogos & derivados , Idoso , Cistina/metabolismo , Cistina/farmacologia , Diabetes Mellitus/metabolismo , Hemoglobinas/análise , Humanos , Metemoglobina/análise , Metemoglobina/metabolismo , Metemoglobinemia/metabolismo , Pessoa de Meia-Idade , Nitritos/sangue , Compostos Organosselênicos/metabolismo , Oxirredução , Espécies Reativas de Oxigênio , Ureia/metabolismo , Ureia/farmacologia
18.
Anal Chem ; 93(2): 1126-1134, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33305941

RESUMO

Among the key issues that are commonly associated with the development of microarray-based assays are nonspecific binding and diffusion constraints. Here we present a novel strategy addressing both of these challenges simultaneously. The essence of the method consists in blocking the microarray surface with a blocking agent containing a perfluoroalkyl chain and a disulfide linker. The resulting surface is hydrophobic, and no immiscible liquid layer remains on it upon cyclically draining and replenishing the sample solution, ensuring an efficient mass transfer of an analyte onto a microarray. Prior to the signal detection procedure, disulfide bonds are chemically cleaved, and the perfluoroalkyl chains are removed from the microarray surface along with nonspecifically adsorbed proteins, resulting in extremely low background. Using conventional fluorescent detection, we show a 30-fold increase in signal/background ratio compared to a common epoxy-modified glass substrate. The combination of this technique with magnetic beads detection results in a simple and ultrasensitive cholera toxin (CT) immunoassay. The limit of detection (LOD) is 1 fM, which is achieved with an analyte binding time of 1 h. Efficient mass transfer provides highly sensitive detection of whole virus particles despite their low diffusion coefficient. The achieved LOD for vaccinia virus is 104 particles in 1 mL of sample. Finally, we have performed for the first time the simultaneous detection of whole virus and CT protein biomarker in a single assay. The developed technique can be used for multiplex detection of trace amounts of pathogens of various natures.


Assuntos
Toxina da Cólera/análise , Cistina/análogos & derivados , Imunofluorescência , Imunoensaio , Análise Serial de Proteínas , Toxina da Cólera/metabolismo , Cistina/síntese química , Cistina/química , Estrutura Molecular , Vírus Vaccinia/enzimologia , Vírus Vaccinia/isolamento & purificação
19.
Protein Pept Lett ; 28(6): 603-611, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33357178

RESUMO

BACKGROUND: The unique hypervariable C-terminal region (HVR) of K-Ras4B, one of the most frequently mutated proteins in many powerful cancers, contains a C-terminal farnesylated and methylated Cys and a poly-lysine motif, which decides the association of K-Ras4B to the inner leaflet of plasma membrane for activating the downstream signaling activity. In our previous work, we inserted an additional Cys in K-Ras4B HVR peptide synthesis for NCL in the semi-synthesis of K-Ras4b protein, but it is not suitable for application in protein dimerization research. The recently developed selenocysteine (Sec, U) mediated native chemical ligation reaction followed by selective deselenization, which can help to broaden the scope of protein synthesis, requires the generation of the peptide fragment with an N-terminal Sec. OBJECTIVE: To synthesize K-Ras4B HVR peptide containing both N-terminal Sec and C-terminal farnesylated and methylated Cys to achieve traceless protein semi-synthesis. METHODS AND RESULTS: We have developed a facile synthesis approach for producing Boc-Sec)2-OH using economic Se powder, which can facilitate scaling up preparation of peptides containing Sec at the N-terminus. Furthermore, we synthesized K-Ras4B HVR peptide containing selenocystine by utilization of Boc-Sec)2-OH. Finally, we took K-Ras4B HVR peptide as an example to test the compatibility of farnesylation reaction at Cys with the N-terminal Sec)2, and the farnesyl group was successfully added to the thiol group of Cys.


Assuntos
Cistina/análogos & derivados , Compostos Organosselênicos , Peptídeos , Prenilação de Proteína , Técnicas de Química Sintética , Cisteína/química , Cistina/síntese química , Cistina/química , Humanos , Modelos Moleculares , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Peptídeos/síntese química , Peptídeos/química , Proteínas Proto-Oncogênicas p21(ras)/química
20.
ACS Chem Biol ; 15(11): 2966-2975, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33078931

RESUMO

Bacterial cell walls contain peptidoglycan (PG), a scaffold that provides proper rigidity to resist lysis from internal osmotic pressure and a barrier to protect cells against external stressors. It consists of repeating sugar units with a linkage to a stem peptide that becomes cross-linked by cell wall transpeptidases (TP). While synthetic PG fragments containing l-lysine in the third position on the stem peptide are easier to access, those with meso-diaminopimelic acid (m-DAP) pose a severe synthetic challenge. Herein, we describe a solid phase synthetic scheme based on widely available building blocks to assemble meso-cystine (m-CYT), which mimics key structural features of m-DAP. To demonstrate proper mimicry of m-DAP, cell wall probes were synthesized with m-CYT in place of m-DAP and evaluated for their metabolic processing in live bacterial cells. We found that m-CYT-based cell wall probes were properly processed by TPs in various bacterial species that endogenously contain m-DAP in their PG. Additionally, we have used hybrid quantum mechanical/molecular mechanical (QM/MM) and molecular dynamics (MD) simulations to explore the influence of m-DAP analogs on the PG cross-linking. The results showed that the cross-linking mechanism of transpeptidases occurred through a concerted process. We anticipate that this strategy, which is based on the use of inexpensive and commercially available building blocks, can be widely adopted to provide greater accessibility of PG mimics for m-DAP containing organisms.


Assuntos
Bactérias/metabolismo , Parede Celular/metabolismo , Cistina/metabolismo , Ácido Diaminopimélico/metabolismo , Bactérias/química , Parede Celular/química , Cistina/análogos & derivados , Cistina/síntese química , Ácido Diaminopimélico/análogos & derivados , Ácido Diaminopimélico/síntese química , Mycobacterium smegmatis/metabolismo , Peptidoglicano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...